Current Limited

Load Switch

CE4610A

Preliminary

- INTRODUCTION

The CE4610A is a current limited P-channel MOSFET power switch designed for high-side load switching applications. This switch operates with inputs ranging from 2.5 V to 5.5 V , making it ideal for both 3 V and 5 V systems. An integrated current-limiting circuit protects the input supply against large currents which may cause the supply to fall out of regulation. The CE4610A is also protected from thermal overload which limits power dissipation and junction temperatures. It can be used to control loads that require up to 1 A . Current limit threshold is programmed with a resistor from SET to ground.

- APPLICATIONS

- Hot-Plug Power Supplies
- Battery-Charger Circuits
- Motherboard USB Power Switch
- BLOCK DIAGRA

- FEATURES

- Low quiescent current: $9 \mu \mathrm{~A}$ (Typ.)
- Shutdown Current: $<1 \mu \mathrm{~A}$
- Programmable

Over-Current Threshold

- Fast Transient Response: 400ns Response to Short Circuit
- Input Voltage: 2.5V~5.5V
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Internal Switches: $145 \mathrm{~m} \Omega$
- Only 2.5V Needed for ON/OFF Control
- Under-Voltage Lockout
- Thermal Fault Protection
- 4 kV ESD Rating
- Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package: SOT-23-5
- Notebook Computers
- Personal Communication Devices
- USB Device Power Switch
- ORDER INFORMATION

CE4610(1)(2)3

DESIGNATOR	SYMBOL	DESCRIPTION
(1)	A	$\mathrm{I}_{\text {LIM }}=1 \mathrm{~A} @ \mathrm{R}_{\text {SET }}=6.8 \mathrm{k} \Omega$
	H	CE High Active
	L	CE Low Active
(3)	M	Package: SOT-23-5

- PIN CONFIGURATION

PIN NUMBER	SYMBOL	FUNCTION
1	OUT	P-channel MOSFET drain. Connect a 0.47μ F capacitor from OUT to GND.
2	GND	Ground Pin
3	SET	Current limit set input. A resistor from SET to ground sets the current limit for the switch.
4	CE	Chip Enable input. Two versions are available, active-high and active-low. See Ordering Information for details.
5	$\mathbb{I N}$	P-channel MOSFET source. Connect a 1μ F capacitor from IN to GND.

■ ABSOLUTE MAXIMUM RATINGS
(Unless otherwise specified, $\mathbf{T a}=\mathbf{2 5}^{\circ} \mathrm{C}$)

PARAMETER		SYMBOL	RATINGS
Input Voltage		V_{IN}	$-0.3 \sim 6$
$\mathrm{CE}, \mathrm{SET}$, OUT Voltage		$\mathrm{V}_{\mathrm{CE}}, \mathrm{V}_{\text {SET }}, \mathrm{V}_{\text {OUT }}$	$-0.3 \sim \mathrm{~V}_{\mathrm{IN}}+0.3$
Maximum Continuous Switch Current	$\mathrm{I}_{\mathrm{MAX}}$	2	V
Power Dissipation	SOT-23-5	Pd	400
Operating Temperature Range	$\mathrm{T}_{\text {opr }}$	$-40 \sim+85$	A
Junction Temperature		T_{j}	125
Storage Temperature		$\mathrm{T}_{\text {stg }}$	$-40 \sim+125$
ESD Rating2 - HBM 4000 V		$\mathrm{V}_{\text {ESD }}$	4000
Soldering Temperature \& Time		$\mathrm{T}_{\text {solder }}$	$260{ }^{\circ} \mathrm{C}, 10 \mathrm{~s}$

- ELECTRICAL CHARACTERISTICS

CE4610A
$\left(\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

- TYPICAL APPLICATION

TYPICAL PERFORMANCE CHARACTERISTICS

(Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Quiescent Current vs. Input Voltage

Off-Supply Current vs. Temperature

Off-Switch Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

(Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Turn-On

Short-Circuit Through 0.3Ω

Current Limit vs. Temperature

Turn-Off

OPERATION

Setting Current Limit

In most applications, the variation in $\mathrm{I}_{\text {LIM }}$ must be taken into account when determining $\mathrm{R}_{\text {SET }}$. The lıim $^{\text {variation is }}$ due to processing variations from part to part, as well as variations in the voltages at IN and OUT, plus the operating temperature. See charts "Current Limit vs. Temperature" and "Output Current vs. Output Voltage." Together, these three factors add up to a $\pm 25 \%$ tolerance (see llim specification in Electrical Characteristics section). Figure 1 illustrates a cold device with a statistically higher current limit and a hot device with a statistically lower current limit, both with $\mathrm{R}_{\text {SET }}$ equal to $10.5 \mathrm{k} \Omega$. While the chart, "R $\mathrm{R}_{\text {SET }}$ vs. ILIM" indicates an $\mathrm{I}_{\text {LIM }}$ of 0.7 A with an $\mathrm{R}_{\text {SET }}$ of $10.5 \mathrm{k} \Omega$, this figure shows that the actual current limit will be at least 0.525A and no greater than 0.880A.

To determine $\mathrm{R}_{\mathrm{SET}}$, start with the maximum current drawn by the load and multiply it by 1.33 (typical $\mathrm{I}_{\mathrm{LIM}}=$ minimum $\mathrm{I}_{\mathrm{LIM}} / 0.75$). This is the typical current limit value. Next, refer to "R $\mathrm{R}_{\text {SET }}$ vs. lıIM" and find the $\mathrm{R}_{\text {SET }}$ that corresponds to the typical current limit value. Choose the largest resistor available that is less than or equal to it. The maximum current is derived by multiplying the typical current for the chosen $R_{\text {SET }}$ in the chart by 1.25. A few standard resistor values are listed in Table 1.

Fig. 1 Current Limit Using 10.5K ω

$\mathbf{R}_{\text {SET }}$ (k $\boldsymbol{)}$	Current Limit Typ.(mA)	Device Will Not Current Limit Below (mA)	Device Always Current Limits Below (mA)
40.2	200	150	250
30.9	250	188	313
24.9	300	225	375
22.1	350	263	438
19.6	400	300	500
17.8	450	338	563
16.2	500	375	625
14.7	550	413	688
13.0	600	450	750
10.5	700	525	875
8.87	800	600	1000
7.50	900	675	1125
6.81	1000	750	1250
6.04	1100	825	1375
5.49	1200	900	1500
4.99	1300	975	1625
4.64	1400	1050	1750

Table 1: Current Limit R $_{\text {SET }}$ Values

Example: A USB port requires 0.5A. 0.5A multiplied by 1.33 is 0.665 A . From the chart named "R $R_{\text {SET }}$ vs. ILIM," $R_{\text {SET }}$ should be less than $11 \mathrm{k} \Omega .10 .5 \mathrm{k} \Omega$ is a standard value that is a little less than $11 \mathrm{k} \Omega$ but very close. The chart reads approximately 0.700 A as a typical $\mathrm{I}_{\text {LIM }}$ value for $10.5 \mathrm{k} \Omega$. Multiplying 0.700 A by 0.75 and 1.25 shows that the CE4610A will limit the load current to greater than 0.525A but less than 0.875A.

Operation in Current Limit

When a heavy load is applied to the output of the CE4610A, the load current is limited to the value of $\mathrm{I}_{\text {LIM }}$ determined by $\mathrm{R}_{\text {SET }}$. Since the load is demanding more current than $\mathrm{I}_{\text {LIM }}$, the voltage at the output drops. This causes the CE4610A to dissipate a larger than normal quantity of power, and its die temperature to increase. When the die temperature exceeds an over-temperature limit, the CE4610A will shut down until is has cooled sufficiently, at which point it will startup again. The CE4610A will continue to cycle on and off until the load is removed, power is removed, or until a logic high level is applied to ON .

Enable Input

In many systems, power planes are controlled by integrated circuits which run at lower voltages than the power plane itself. The enable input ON of the CE4610A has low and high threshold voltages that accommodate this condition. The threshold voltages are compatible with 5 V TTL and 2.5 V to 5 V CMOS.

Reverse Voltage

The CE4610A is designed to control current flowing from IN to OUT. If a voltage is applied to OUT which is greater than the voltage on IN, large currents may flow. This could cause damage to the CE4610A.

- PACKAGING INFORMATION
- SOT23-5 Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	$0.950($ BSC $)$		$0.037($ BSC $)$	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

