Low Voltage 1MHz Switching Frequency
 3W High Power White LED Driver

■ INTRODUCTION:

The CE9401 is designed for single-cell or dual-cell or triangle-cell alkaline, NiMH , or NiCd or single-cell LiFePO4 lithium-ion battery powered application. It is a high efficiency boost converter with a low 95 mV feedback voltage. A switching frequency of 1.0 MHz minimizes solution footprint by allowing the use of tiny low profile inductors and ceramic capacitors. The current mode PWM design is internally compensated, and the device has a 0.9 V start-up voltage with operation down to 0.65 V . The CE9401 is rated over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

■ FEATURES:

- $\mathrm{V}_{\text {IN }}$ Operation Range: 0.65 V to $\mathrm{V}_{\text {OUT }}-0.2 \mathrm{~V}$
- Up to 90% Efficiency
- Low Start-Up Voltage: 0.9V (LLed=270mA)
- Low Hold Voltage: 0.75 V (Led $=200 \mathrm{~mA}$)
- 1.0MHz Fixed Switching Frequency
- PWM/PFM Auto Switching Maintains High Efficiency
- Over-Thermal and Over-Current Protection
- Low Shutdown Current: $<1.0 \mu \mathrm{~A}$
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range
- Pb-free, space-saving SOT-23-6L package
- Digital Still and Video Cameras Flash
- Camcorder Torch Lamp

■ ORDER INFORMATION:

CE9401(1)(2)

DESIGNATOR	SYMBOL	DESCRIPTION
(1)	A	Standard
(2)	E	Package: SOT-23-6L

Tabel1. Pin Description

PIN NUMBER	PIN NAME	FUNCTION
1	SW	Switch Pin. Connect inductor between SW and VIN
2	GND	Signal and Power Ground
3	FB	Feedback Input
4	CE	Chip Enable. High Active
5	VOUT	Output Pin
6	VIN	Battery Input

■ BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATINGS
(Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

| PARAMETER | | SYMBOL | RATINGS |
| :---: | :---: | :---: | :---: | UNITS

ELECTRICAL CHARACTERISTICS

CE9401 ($\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{LED}}=700 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Test Circuit Figure1, unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Feedback Voltage	$\mathrm{V}_{\text {FB }}$		90	95	100	mV
Minimum Start-Up Voltage	$V_{\text {Start }}$	$\mathrm{V}_{\text {IN: }}: \mathrm{OV} \rightarrow 3 \mathrm{~V}, \mathrm{I}_{\text {LED }}=270 \mathrm{~mA}$		0.9		V
Minimum Hold Voltage	$\mathrm{V}_{\text {HoLD }}$	$\mathrm{V}_{\text {IN }}: 3 \mathrm{~V} \rightarrow 0 \mathrm{~V}, \mathrm{I}_{\text {LED }}=200 \mathrm{~mA}$		0.75		V
Minimum Operating Voltage	$\mathrm{V}_{\text {IN }}$			0.65		V
Quiescent Current	Icc	Measured On $\mathrm{V}_{\text {OUT }}, \mathrm{V}_{\mathrm{FB}}=130 \mathrm{mV}$, $V_{\text {OUT }}=3.4 \mathrm{~V}, \mathrm{I}_{\text {LED }}=0$		130	300	$\mu \mathrm{A}$
Max Duty Cycle		$\mathrm{V}_{\mathrm{FB}}=\mathrm{GND}$	80	87		\%
Oscillator Frequency	$\mathrm{f}_{\text {osc }}$			1.0		MHz
NMOS Current Limit	$\mathrm{l}_{\text {PK }}$			3.0		A
Switch On Resistance		$\mathrm{V}_{\text {OUT }}=3.4 \mathrm{~V}, \mathrm{I}_{\text {LED }}=700 \mathrm{~mA}$		0.1		Ω
NMOS Switch Leakage		$\mathrm{V}_{\text {CE }}=0, \mathrm{~V}_{\mathrm{SW}}=5.0 \mathrm{~V}$		± 0.01	± 1	$\mu \mathrm{A}$
CE "High" Voltage ${ }^{(1)}$	$\mathrm{V}_{\text {cE"H" }}$	$\mathrm{V}_{1 \mathrm{~N}}=1.8 \mathrm{~V}$	1.0		$\mathrm{V}_{\text {IN }}$	V
CE "Low" Voltage ${ }^{(2)}$	$\mathrm{V}_{\text {CE'L" }}$	$\mathrm{V}_{1 \mathrm{~N}}=1.8 \mathrm{~V}$			0.4	V
CE Leakage Current	$\mathrm{I}_{\text {CE }}$	$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}$		± 0.1	± 1	$\mu \mathrm{A}$
Over Thermal Shutdown				140		${ }^{\circ} \mathrm{C}$
Over Thermal Hysteresis				20		${ }^{\circ} \mathrm{C}$

NOTE :

1. High Voltage: Forcing CE above 1.0 V enables the part.
2. Low Voltage: Forcing CE below 0.4 V shuts down the device. In shutdown, all functions are disabled drawing $<1 \mu \mathrm{~A}$ supply current. Do not leave CE floating.

■ TYPICAL APPLICATION CIRCUITS

Figure1 Basic Application Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

($\mathrm{V}_{\mathrm{F}}=3.1 \mathrm{~V} @ 550 \mathrm{~mA}$, Test Figure1 above unless otherwise specified)

INPUT CURRENT vs VOLTAGE

LED Current vs Input Voltage

SWITCHING WAVEFORM

$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{l}_{\mathrm{LED}}=550 \mathrm{~mA}$
500ns/DIV

■ OPERATION

The CE9401 3W High Power White LED Driver is targeted for single-cell or dual-cell or triangle-cell alkaline, NiMH , and NiCd and single-cell LiFePO4 lithium-ion battery applications. It has a 0.9 V typical start-up voltage with operation after start-up to less than 0.65 V .

The high 1.0 MHz switching frequency of the CE9401 facilitates output filter component size reduction for improved power density and reduced overall footprint. It also provides greater bandwidth and improved transient response over other lower frequency step-up converters. With its low $R_{\text {Ds(ON) }}$ and 95 mV feedback Voltage, the devices attain up to 90% efficiency.

SLOPE COMPENSATION

Slope compensation provides stability in constant frequency architecture by preventing sub-harmonic oscillations at high duty cycles. It is accomplished internally by adding a compensating ramp to the inductor current signal

- APPLICATION INFORMATION

The basic CE9401 application circuits are shown in Figure 1.External component selection is driven by the load requirement and begins with the selection of L followed by $\mathrm{C}_{\mathbb{I N}}$ and $\mathrm{C}_{\text {out }}$.

OUTPUT AND INPUT CAPACITOR SELECTION

Surface mount X5R or X7R ceramic capacitors are suggested for both the output and the input. For the output capacitor (C2 in Figure 1) a $10 \mu \mathrm{~F}, 10 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}$ ceramic capacitor is necessary for stability, transient response, and ripple performance.

The same 0805 sized capacitor is used for the input (C1 of Figure 1). If desired, a smaller, 0603
at duty cycles in excess of 50%. This slope compensated current mode PWM control provides stable switching and cycle-by-cycle current limit for excellent load and line response.

CURRENT SENSING

A signal representing NMOS switch current is summed with the slope compensator. The summed signal is compared to the error amplifier output to provide a peak current control command for the PWM. Peak switch current is limited to approximately 3A independent of input or output voltage. The current signal is blanked for 40 ns to enhance noise rejection.

PWM/PFM AUTO SWITCHING

The CE9401 offers PWM/PFM automatic switching operation. The PWM operation is shifted to the PFM operation automatically at light load so that it maintains high efficiency over a wide range of load currents.
sized, $10 \mu \mathrm{~F}, 6.3 \mathrm{~V}, \mathrm{X} 5 \mathrm{R}$ ceramic capacitor can be substituted for the input capacitor (C1).

INDUCTOR SELECTION

The CE9401 is designed to operate with a $2.2 \mu \mathrm{H}$ inductor for all input/output voltage combinations. The inductor saturation current rating should be greater than the NMOS current limit specification listed in the Electrical Characteristics table. If necessary, the peak inductor current can exceed the saturation level by a small amount with no significant effect on performance.

Different core materials and shapes will
change the size/current and price/current relationship of an inductor. The choice of which style inductor to use often depends more on the price vs. size requirements and any radiated field/EMI requirements than on what the CE9401 requires to operate. Table 2 shows some typical surface mount inductors that work well in CE9401 applications.

Table 2.Representative Surface Mount Inductors

PART NUMBE R	$\begin{gathered} \text { VALU } \\ \text { E } \\ (\mu \mathrm{H}) \end{gathered}$	$\begin{aligned} & \hline \text { MAX } \\ & \mathrm{DCR} \\ & (\mathrm{~m} \Omega) \end{aligned}$	MAX DC CURREN T (A)	
$\begin{gathered} \text { Sumida } \\ \text { CDRH } \\ \text { 3D16 } \end{gathered}$	$\begin{aligned} & 2.2 \\ & 3.3 \\ & 4.7 \end{aligned}$	$\begin{gathered} 75 \\ 110 \\ 162 \end{gathered}$	$\begin{aligned} & 1.20 \\ & 1.10 \\ & 0.90 \end{aligned}$	$\begin{gathered} 3.8 \times 3.8 \times \\ 1.8 \end{gathered}$
Sumida CR43	$\begin{aligned} & 2.2 \\ & 3.3 \\ & 4.7 \end{aligned}$	$\begin{gathered} \hline 71.2 \\ 86.2 \\ 108 \end{gathered}$	$\begin{aligned} & 1.75 \\ & 1.44 \\ & 1.15 \end{aligned}$	$\begin{gathered} 4.5 \times 4.0 \times \\ 3.5 \end{gathered}$

PCB LAYOUT GUIDANCE

When laying out the printed circuit board, the following suggestions should be taken to ensure proper operation of the CE9401. These items are also illustrated graphically in Figure 2.

The power traces, including the GND trace, the SW trace and the V_{IN} trace should be kept short, direct and wide to allow large current flow. Put enough multiply-layer pads when they need to

Sumida	2.2	75	1.32	$4.7 \times 4.7 \times$
CDRH	3.3	110	1.04	2.0
4D18	4.7	162	0.84	

OUTPUT DIODE

Use a schottky diode such as an MBR0520L, PMEG2010EA, 1N5817 or equivalent with rated current over 3A. Do not use ordinary rectifier diodes, since the slow recovery times will compromise efficiency.

SETTING THE LED CURRENT

Figure1 shows the basic application circuit of the CE9401. The internal 95 mV reference voltage is compared to the voltage at the FB pin to generate an error signal at the output of the error amplifier. It's recommended to use a 1% or better precision resistor for the better LED current accuracy. The external resistor sets the LED current according to the following equation:

$$
\mathrm{R}_{1}=95 \mathrm{mV} / \mathrm{I}_{\mathrm{LED}}
$$

change the trace layer. Keep the switching node, SW, away from the sensitive FB node.

1. The FB pin should directly connect to the feedback resistors. The divider LED/RS must be connected between the (+) plate of Cout and ground.
2. Connect the $(+)$ plate of $\mathrm{C}_{\mathbb{I}}$ to the $\mathrm{V}_{\mathbb{I N}}$ pin as closely as possible.
3. Keep the (-) plate of $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {out }}$ as close as possible.

Figure2 PCB Layout

- PACKAGING INFORMATION
- SOT-23-6L Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950 (BSC)		$0.037($ BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

© Nanjing Chipower Electronics Inc.
Chipower cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Chipower product. No circuit patent license, copyrights or other intellectual property rights are implied. Chipower reserves the right to make changes to their products or specifications without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.

